摘要翻译:
本文提出了一种利用每链路网络熵来量化二部图结构的方法。从理论和数值两方面计算了具有随机链路的二部图的网络熵。作为所提方法分析集体行为的一个应用,对参与方在外汇市场上报价和交易的事务进行了量化。每个环节的网络熵与宏观经济状况是相对应的。利用有限混合Gumbel分布拟合每周每链路网络熵最小值的经验分布。通过Kolmogorov-Smirnov检验,验证了Gumbel分布与参数估计的混合分割过程。外推极端事件经验概率的Gumbel分布的有限混合在统计显著水平上具有解释力。
---
英文标题:
《Inference of Extreme Synchrony with an Entropy Measure on a Bipartite
Network》
---
作者:
Aki-Hiro Sato
---
最新提交年份:
2013
---
分类信息:
一级分类:Physics 物理学
二级分类:Data Analysis, Statistics and Probability
数据分析、统计与概率
分类描述:Methods, software and hardware for physics data analysis: data processing and storage; measurement methodology; statistical and mathematical aspects such as parametrization and uncertainties.
物理数据分析的方法、软硬件:数据处理与存储;测量方法;统计和数学方面,如参数化和不确定性。
--
一级分类:Computer Science 计算机科学
二级分类:Computational Engineering, Finance, and Science 计算工程、金融和科学
分类描述:Covers applications of computer science to the mathematical modeling of complex systems in the fields of science, engineering, and finance. Papers here are interdisciplinary and applications-oriented, focusing on techniques and tools that enable challenging computational simulations to be performed, for which the use of supercomputers or distributed computing platforms is often required. Includes material in ACM Subject Classes J.2, J.3, and J.4 (economics).
涵盖了计算机科学在科学、工程和金融领域复杂系统的数学建模中的应用。这里的论文是跨学科和面向应用的,集中在技术和工具,使挑战性的计算模拟能够执行,其中往往需要使用超级计算机或分布式计算平台。包括ACM学科课程J.2、J.3和J.4(经济学)中的材料。
--
一级分类:Physics 物理学
二级分类:Physics and Society 物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
---
英文摘要:
This article proposes a method to quantify the structure of a bipartite graph using a network entropy per link. The network entropy of a bipartite graph with random links is calculated both numerically and theoretically. As an application of the proposed method to analyze collective behavior, the affairs in which participants quote and trade in the foreign exchange market are quantified. The network entropy per link is found to correspond to the macroeconomic situation. A finite mixture of Gumbel distributions is used to fit the empirical distribution for the minimum values of network entropy per link in each week. The mixture of Gumbel distributions with parameter estimates by segmentation procedure is verified by the Kolmogorov--Smirnov test. The finite mixture of Gumbel distributions that extrapolate the empirical probability of extreme events has explanatory power at a statistically significant level.
---
PDF链接:
https://arxiv.org/pdf/1207.4860