全部版块 我的主页
论坛 经济学人 二区 外文文献专区
223 0
2022-03-28
摘要翻译:
利用几个金融市场指数的日收盘价时间序列的频率分布,我们研究了在数据中发现的偏离等概率序列分布的偏差是否可以解释金融市场偏离对数正态分布的部分原因,如果可以,这种偏差的程度和序列长度是多少。我们通过比较金融市场实际时间序列和纯算法建立的序列的二元序列分布来做到这一点。我们的讨论是一个起点,可以进一步研究市场作为一个基于规则的系统,尽管它有明显的随机性,但它有一个‘算法’的组成部分,并使用算法概率理论和新的工具来研究市场价格现象。主要的讨论是根据经济学领域中与市场的算法观点相一致的假设进行的。
---
英文标题:
《An algorithmic information-theoretic approach to the behaviour of
  financial markets》
---
作者:
Hector Zenil and Jean-Paul Delahaye
---
最新提交年份:
2010
---
分类信息:

一级分类:Quantitative Finance        数量金融学
二级分类:Trading and Market Microstructure        交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--
一级分类:Computer Science        计算机科学
二级分类:Computational Engineering, Finance, and Science        计算工程、金融和科学
分类描述:Covers applications of computer science to the mathematical modeling of complex systems in the fields of science, engineering, and finance. Papers here are interdisciplinary and applications-oriented, focusing on techniques and tools that enable challenging computational simulations to be performed, for which the use of supercomputers or distributed computing platforms is often required. Includes material in ACM Subject Classes J.2, J.3, and J.4 (economics).
涵盖了计算机科学在科学、工程和金融领域复杂系统的数学建模中的应用。这里的论文是跨学科和面向应用的,集中在技术和工具,使挑战性的计算模拟能够执行,其中往往需要使用超级计算机或分布式计算平台。包括ACM学科课程J.2、J.3和J.4(经济学)中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Information Theory        信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Mathematics        数学
二级分类:Information Theory        信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--

---
英文摘要:
  Using frequency distributions of daily closing price time series of several financial market indexes, we investigate whether the bias away from an equiprobable sequence distribution found in the data, predicted by algorithmic information theory, may account for some of the deviation of financial markets from log-normal, and if so for how much of said deviation and over what sequence lengths. We do so by comparing the distributions of binary sequences from actual time series of financial markets and series built up from purely algorithmic means. Our discussion is a starting point for a further investigation of the market as a rule-based system with an 'algorithmic' component, despite its apparent randomness, and the use of the theory of algorithmic probability with new tools that can be applied to the study of the market price phenomenon. The main discussion is cast in terms of assumptions common to areas of economics in agreement with an algorithmic view of the market.
---
PDF链接:
https://arxiv.org/pdf/1008.1846
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群