摘要翻译:
我们研究了二维铁磁Ising模型在一系列规则晶格上的问题,这些规则晶格表现为五边形(P=5)、六边形(P=6)等具有常负标量曲率的双曲面上的多边形的镶嵌,这些规则晶格的边数为p>=5。我们用角转移矩阵重整化群方法计算了临界温度和标度指数。结果表明,对于p>=5的所有情况,都观察到了类平均场相变。在Bethe晶格上的Ising模型与计算的相变温度一致的情况下,我们研究了相变温度对p的收敛性。
---
英文标题:
《Ising model on hyperbolic lattice studied by corner transfer matrix
renormalization group method》
---
作者:
Roman Krcmar, Andrej Gendiar, Kouji Ueda and Tomotoshi Nishino
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We study two-dimensional ferromagnetic Ising model on a series of regular lattices, which are represented as the tessellation of polygons with p>=5 sides, such as pentagons (p=5), hexagons (p=6), etc. Such lattices are on hyperbolic planes, which have constant negative scalar curvatures. We calculate critical temperatures and scaling exponents by use of the corner transfer matrix renormalization group method. As a result, the mean-field like phase transition is observed for all the cases p>=5. Convergence of the calculated transition temperatures with respect to p is investigated towards the limit p->infinity, where the system coincides with the Ising model on the Bethe lattice.
---
PDF链接:
https://arxiv.org/pdf/712.0461