摘要翻译:
我们推广了Vidal的无限时间演化分块抽取(iTEBD)算法的一个无限树几何,用于模拟无限长的量子自旋线。我们用矩阵积态ANSATZ数值研究了Bethe晶格上横场中的量子Ising模型。我们观察到一个二级相变,与无限自旋链上的横场Ising模型有一些关键的区别。我们还研究了具有特定纵向场的横向场Ising模型。当横向场关闭时,该模型具有高度简并的基态,而纯伊辛模型的基态只有加倍简并。
---
英文标题:
《The Quantum Transverse Field Ising Model on an Infinite Tree from Matrix
Product States》
---
作者:
Daniel Nagaj, Edward Farhi, Jeffrey Goldstone, Peter Shor, Igor
Sylvester
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Quantum Physics 量子物理学
分类描述:Description coming soon
描述即将到来
--
---
英文摘要:
We give a generalization to an infinite tree geometry of Vidal's infinite time-evolving block decimation (iTEBD) algorithm for simulating an infinite line of quantum spins. We numerically investigate the quantum Ising model in a transverse field on the Bethe lattice using the Matrix Product State ansatz. We observe a second order phase transition, with certain key differences from the transverse field Ising model on an infinite spin chain. We also investigate a transverse field Ising model with a specific longitudinal field. When the transverse field is turned off, this model has a highly degenerate ground state as opposed to the pure Ising model whose ground state is only doubly degenerate.
---
PDF链接:
https://arxiv.org/pdf/712.1806