摘要翻译:
本文给出了对数价格随机过程的齐次波动桥估计理论。该理论的主要工具是在给定的时间间隔内,对不完全桥的开、高、低价格对应于给定的对数价格随机过程及其闭值所包含的信息进行简约编码。与Garman-Klass估计和Parkinson估计相比,新提出的估计的效率得到了很好的比较。
---
英文标题:
《Homogeneous Volatility Bridge Estimators》
---
作者:
Alexander Saichev, Didier Sornette, Vladimir Filimonov and Fulvio
Corsi
---
最新提交年份:
2009
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
英文摘要:
We present a theory of homogeneous volatility bridge estimators for log-price stochastic processes. The main tool of our theory is the parsimonious encoding of the information contained in the open, high and low prices of incomplete bridge, corresponding to given log-price stochastic process, and in its close value, for a given time interval. The efficiency of the new proposed estimators is favorably compared with that of the Garman-Klass and Parkinson estimators.
---
PDF链接:
https://arxiv.org/pdf/0912.1617