英文标题:
《How should you discount your backtest PnL?》
---
作者:
Adam Rej, Philip Seager and Jean-Philippe Bouchaud
---
最新提交年份:
2019
---
英文摘要:
In-sample overfitting is a drawback of any backtest-based investment strategy. It is thus of paramount importance to have an understanding of why and how the in-sample overfitting occurs. In this article we propose a simple framework that allows one to model and quantify in-sample PnL overfitting. This allows us to compute the factor appropriate for discounting PnLs of in-sample investment strategies.
---
中文摘要:
样本中的过度拟合是任何基于回溯测试的投资策略的缺点。因此,了解样本内过度拟合发生的原因和方式至关重要。在本文中,我们提出了一个简单的框架,允许对样本PnL过度拟合进行建模和量化。这允许我们计算适用于贴现样本内投资策略PNL的因子。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
PDF下载:
-->