全部版块 我的主页
论坛 经济学人 二区 外文文献专区
456 0
2022-03-30
摘要翻译:
当前宏观经济学的知识体系是建立在少数变量之间的相互作用之上的,因为传统的宏观经济模型只能处理少数的输入。最近使用大数据的研究表明,在推动总体经济的动态方面,有更多的变量是活跃的。在本文中,我们引入了一个知识图(KG),它不仅包含了传统经济变量之间的联系,还包含了新的替代大数据变量。我们利用先进的自然语言处理(NLP)工具,从大量的学术文献和研究报告文本数据中提取这些新的变量及其联系。作为潜在应用的一个例子,我们将它作为先验知识用于宏观经济中的经济预测模型的变量选择。与统计变量选择方法相比,基于KG的方法具有显著的预测精度,特别是在长期预测方面。
---
英文标题:
《The Knowledge Graph for Macroeconomic Analysis with Alternative Big Data》
---
作者:
Yucheng Yang, Yue Pang, Guanhua Huang, Weinan E
---
最新提交年份:
2020
---
分类信息:

一级分类:Economics        经济学
二级分类:General Economics        一般经济学
分类描述:General methodological, applied, and empirical contributions to economics.
对经济学的一般方法、应用和经验贡献。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Quantitative Finance        数量金融学
二级分类:Economics        经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--

---
英文摘要:
  The current knowledge system of macroeconomics is built on interactions among a small number of variables, since traditional macroeconomic models can mostly handle a handful of inputs. Recent work using big data suggests that a much larger number of variables are active in driving the dynamics of the aggregate economy. In this paper, we introduce a knowledge graph (KG) that consists of not only linkages between traditional economic variables but also new alternative big data variables. We extract these new variables and the linkages by applying advanced natural language processing (NLP) tools on the massive textual data of academic literature and research reports. As one example of the potential applications, we use it as the prior knowledge to select variables for economic forecasting models in macroeconomics. Compared to statistical variable selection methods, KG-based methods achieve significantly higher forecasting accuracy, especially for long run forecasts.
---
PDF链接:
https://arxiv.org/pdf/2010.05172
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群