摘要翻译:
学习算法通常假设每个数据点最多有一个注释或标签。然而,在某些场景中,例如医疗诊断和在线协作,可能会有多个注释可用。在任何一种情况下,获取数据点的标签都可能是昂贵和耗时的(在某些情况下,基本事实可能不存在)。半监督学习方法已经表明,在这些情况下,利用未标记的数据往往是有益的。本文提出了一种概率半监督模型和算法,该模型和算法允许在多个标注器存在的情况下从未标记和标记数据中学习。我们假设已知是什么注释器标记了哪些数据点。提出的方法产生了注解器模型,允许我们提供(1)真实标签的估计和(2)注解器变量的专家意见,无论是标签和未标签的数据。我们提供了不同场景下的数值比较,以及与标准半监督学习的比较。实验表明,与不使用未标注数据的多标注者方法和不使用多标注者信息的方法相比,该方法具有明显的优势。
---
英文标题:
《Modeling Multiple Annotator Expertise in the Semi-Supervised Learning
Scenario》
---
作者:
Yan Yan, Romer Rosales, Glenn Fung, Jennifer Dy
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
英文摘要:
Learning algorithms normally assume that there is at most one annotation or label per data point. However, in some scenarios, such as medical diagnosis and on-line collaboration,multiple annotations may be available. In either case, obtaining labels for data points can be expensive and time-consuming (in some circumstances ground-truth may not exist). Semi-supervised learning approaches have shown that utilizing the unlabeled data is often beneficial in these cases. This paper presents a probabilistic semi-supervised model and algorithm that allows for learning from both unlabeled and labeled data in the presence of multiple annotators. We assume that it is known what annotator labeled which data points. The proposed approach produces annotator models that allow us to provide (1) estimates of the true label and (2) annotator variable expertise for both labeled and unlabeled data. We provide numerical comparisons under various scenarios and with respect to standard semi-supervised learning. Experiments showed that the presented approach provides clear advantages over multi-annotator methods that do not use the unlabeled data and over methods that do not use multi-labeler information.
---
PDF链接:
https://arxiv.org/pdf/1203.3529