全部版块 我的主页
论坛 经济学人 二区 外文文献专区
690 0
2022-03-31
摘要翻译:
EPI中的奈奎斯特鬼影是由奇偶回波相位失配引起的。然而,由于局部磁场变化的非线性和时变性,传统的参考扫描校正方法往往会产生错误的结果,尤其是在高场MRI中。最近的研究表明,鬼影校正问题可以转化为k-空间插值问题,可以用结构化的低秩Hankel矩阵方法来解决。最近的另一项工作表明,数据驱动的Hankel矩阵分解可以重新表述为表现出与深度卷积神经网络相似的结构。通过协同地结合这些发现,我们提出了一种k空间深度学习方法,该方法在加速和非加速EPI采集中无需参考扫描即可立即纠正相位失配。为了充分利用奇偶相位方向冗余,将K空间数据分为奇偶相位编码的两个信道。通过将多线圈K空间数据叠加到附加的输入通道中,也可以利用线圈之间的冗余。然后训练我们的K空间鬼影校正网络学习插值核来估计缺失的虚拟K空间数据。对于加速后的EPI数据,训练相同的神经网络来直接估计从ghost和Subscale中缺失的K空间数据的插值核。利用3T和7T在体数据进行重建的结果表明,该方法在图像质量上优于现有方法,计算速度快得多。本文提出的K空间深度学习用于EPI鬼影校正具有鲁棒性强、速度快、可与加速度相结合等优点,在不改变现有采集协议的情况下,可以作为一种有前途的高场强MRI鬼影校正工具。
---
英文标题:
《k-Space Deep Learning for Reference-free EPI Ghost Correction》
---
作者:
Juyoung Lee, Yoseob Han, Jae-Kyun Ryu, Jang-Yeon Park and Jong Chul Ye
---
最新提交年份:
2019
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Computer Vision and Pattern Recognition        计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Image and Video Processing        图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
一级分类:Statistics        统计学
二级分类:Machine Learning        机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--

---
英文摘要:
  Nyquist ghost artifacts in EPI are originated from phase mismatch between the even and odd echoes. However, conventional correction methods using reference scans often produce erroneous results especially in high-field MRI due to the non-linear and time-varying local magnetic field changes. Recently, it was shown that the problem of ghost correction can be reformulated as k-space interpolation problem that can be solved using structured low-rank Hankel matrix approaches. Another recent work showed that data driven Hankel matrix decomposition can be reformulated to exhibit similar structures as deep convolutional neural network. By synergistically combining these findings, we propose a k-space deep learning approach that immediately corrects the phase mismatch without a reference scan in both accelerated and non-accelerated EPI acquisitions. To take advantage of the even and odd-phase directional redundancy, the k-space data is divided into two channels configured with even and odd phase encodings. The redundancies between coils are also exploited by stacking the multi-coil k-space data into additional input channels. Then, our k-space ghost correction network is trained to learn the interpolation kernel to estimate the missing virtual k-space data. For the accelerated EPI data, the same neural network is trained to directly estimate the interpolation kernels for missing k-space data from both ghost and subsampling. Reconstruction results using 3T and 7T in-vivo data showed that the proposed method outperformed the image quality compared to the existing methods, and the computing time is much faster.The proposed k-space deep learning for EPI ghost correction is highly robust and fast, and can be combined with acceleration, so that it can be used as a promising correction tool for high-field MRI without changing the current acquisition protocol.
---
PDF链接:
https://arxiv.org/pdf/1806.00153
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群