摘要翻译:
证明了超椭圆曲线$Y^2=(x-t)h(x)$在特征为零的基域$K$的代数闭包上没有非平凡自同态,条件是$T\在K$上,多项式$h(x)$的Galois群是“非常大”且$deg(h)$是偶数>8。(奇数$deg(h)>3$的情况很容易从作者以前的结果中得到。)
---
英文标题:
《Families of absolutely simple hyperelliptic jacobians》
---
作者:
Yuri G. Zarhin
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
---
英文摘要:
We prove that the jacobian of a hyperelliptic curve $y^2=(x-t)h(x)$ has no nontrivial endomorphisms over an algebraic closure of the ground field $K$ of characteristic zero if $t \in K$ and the Galois group of the polynomial $h(x)$ over $K$ is "very big" and $deg(h)$ is an even number >8. (The case of odd $deg(h)>3$ follows easily from previous results of the author.)
---
PDF链接:
https://arxiv.org/pdf/0804.4264