摘要翻译:
马尔可夫网络(Markov Network,MNs)是一种简洁地表示联合概率分布的强大方法,但由于评估候选结构的代价较高,大多数的MN结构学习方法都非常慢。依赖网络将概率分布表示为一组条件概率分布。DNs学习速度很快,但条件分布可能不一致,很少有推理算法支持DNs。本文提出了一种将DN转换为MN的闭式方法,使我们既享受了DN学习的效率,又享受了MN表示的方便。当DN一致时,这种转换是精确的。对于不一致的DNs,我们提出了显着改善近似的平均方法。在12个标准数据集的实验中,我们的方法比使用权重学习组合条件分布快几个数量级,而且通常更准确。
---
英文标题:
《Closed-Form Learning of Markov Networks from Dependency Networks》
---
作者:
Daniel Lowd
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
英文摘要:
Markov networks (MNs) are a powerful way to compactly represent a joint probability distribution, but most MN structure learning methods are very slow, due to the high cost of evaluating candidates structures. Dependency networks (DNs) represent a probability distribution as a set of conditional probability distributions. DNs are very fast to learn, but the conditional distributions may be inconsistent with each other and few inference algorithms support DNs. In this paper, we present a closed-form method for converting a DN into an MN, allowing us to enjoy both the efficiency of DN learning and the convenience of the MN representation. When the DN is consistent, this conversion is exact. For inconsistent DNs, we present averaging methods that significantly improve the approximation. In experiments on 12 standard datasets, our methods are orders of magnitude faster than and often more accurate than combining conditional distributions using weight learning.
---
PDF链接:
https://arxiv.org/pdf/1210.4896