摘要翻译:
本文研究了弱辨识GMM模型的最优决策规则,包括估计量和检验。我们推导了弱辨识GMM的极限实验,并提出了一个理论上有动机的先验类,作为极限情形,它产生了准Bayes决策规则。与以前文献中的结果一起,这为准贝叶斯方法建立了理想的性质,无论模型识别状态如何,我们推荐准贝叶斯用于识别是一个问题的设置。我们进一步提出了加权平均功率最优辨识鲁棒频率检验和置信度集,并证明了弱辨识下准Bayes后验的Bernstein-von Mises型结果。
---
英文标题:
《Optimal Decision Rules for Weak GMM》
---
作者:
Isaiah Andrews and Anna Mikusheva
---
最新提交年份:
2021
---
分类信息:
一级分类:Economics        经济学
二级分类:Econometrics        计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
---
英文摘要:
  This paper studies optimal decision rules, including estimators and tests, for weakly identified GMM models. We derive the limit experiment for weakly identified GMM, and propose a theoretically-motivated class of priors which give rise to quasi-Bayes decision rules as a limiting case. Together with results in the previous literature, this establishes desirable properties for the quasi-Bayes approach regardless of model identification status, and we recommend quasi-Bayes for settings where identification is a concern. We further propose weighted average power-optimal identification-robust frequentist tests and confidence sets, and prove a Bernstein-von Mises-type result for the quasi-Bayes posterior under weak identification. 
---
PDF链接:
https://arxiv.org/pdf/2007.04050