摘要翻译:
利用Dumnicki的方法,在$\mathbb{P}^2$上充分一般点上表示具有规定重数的平面曲线组成的线性方程组的非特殊性,我们发展了一种确定$\mathbb{P}^2$上一般点的Seshadri常数下界的渐近方法。用此方法证明了$\MathBB{P}^2$上10个一般点的下界4/13。
---
英文标题:
《An asymptotic version of Dumnicki's algorithm for linear systems in
$\mathbb{CP}^2$》
---
作者:
Thomas Eckl
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Using Dumnicki's approach to showing non-specialty of linear systems consisting of plane curves with prescribed multiplicities in sufficiently general points on $\mathbb{P}^2$ we develop an asymptotic method to determine lower bounds for Seshadri constants of general points on $\mathbb{P}^2$. With this method we prove the lower bound 4/13 for 10 general points on $\mathbb{P}^2$.
---
PDF链接:
https://arxiv.org/pdf/0801.2926