摘要翻译:
本文针对一类形状限制,提出了一种基于投影的一致有效的渐近非保守检验。我们利用的关键洞察力是,这些限制形成了凸锥,一个简单而优雅的结构,在文献中几乎没有被利用。基于这种几何结构所提供的单调性,我们构造了一个bootstrap过程,与许多非标准环境中的研究不同,它无需估计局部参数空间,临界值的获得与计算测试统计量一样简单。此外,通过诉诸强近似,我们的框架适应非参数回归模型以及分布/密度相关和结构设置。由于测试需要一个调整参数(由于问题的非标准性质),我们提出了一个数据驱动的选择,并证明了它的有效性。蒙特卡罗模拟证实我们的测试工作良好。
---
英文标题:
《A Projection Framework for Testing Shape Restrictions That Form Convex
Cones》
---
作者:
Zheng Fang, Juwon Seo
---
最新提交年份:
2021
---
分类信息:
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
This paper develops a uniformly valid and asymptotically nonconservative test based on projection for a class of shape restrictions. The key insight we exploit is that these restrictions form convex cones, a simple and yet elegant structure that has been barely harnessed in the literature. Based on a monotonicity property afforded by such a geometric structure, we construct a bootstrap procedure that, unlike many studies in nonstandard settings, dispenses with estimation of local parameter spaces, and the critical values are obtained in a way as simple as computing the test statistic. Moreover, by appealing to strong approximations, our framework accommodates nonparametric regression models as well as distributional/density-related and structural settings. Since the test entails a tuning parameter (due to the nonstandard nature of the problem), we propose a data-driven choice and prove its validity. Monte Carlo simulations confirm that our test works well.
---
PDF链接:
https://arxiv.org/pdf/1910.07689