摘要翻译:
我们考虑两个具有不同临界指数的临界半无限子系统,并通过它们的曲面耦合它们。界面处的临界行为,受两个子系统临界涨落的影响,可以是相当丰富的。为了考察各种可能性,我们研究了一个由两个耦合Ashkin-Teller模型组成的系统,它们在结的两侧具有不同的四自旋耦合ε.通过改变ε,这两个子系统的某些体积和表面临界指数被不断修正,进而改变了界面临界行为。特别地,我们研究了界面处磁临界指数随相互作用参数强度连续变化的边缘情况。通过DMRG计算检查伸缩参数所期望的行为。
---
英文标题:
《Scaling properties at the interface between different critical
subsystems: The Ashkin-Teller model》
---
作者:
Peter Lajko (Kuwait University), Loic Turban (U. Henri Poincare-Nancy
1) and Ferenc Igloi (Research Institute for Solid State Physics and Optics,
Budapest and Szeged University)
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We consider two critical semi-infinite subsystems with different critical exponents and couple them through their surfaces. The critical behavior at the interface, influenced by the critical fluctuations of the two subsystems, can be quite rich. In order to examine the various possibilities, we study a system composed of two coupled Ashkin-Teller models with different four-spin couplings epsilon, on the two sides of the junction. By varying epsilon, some bulk and surface critical exponents of the two subsystems are continuously modified, which in turn changes the interface critical behavior. In particular we study the marginal situation, for which magnetic critical exponents at the interface vary continuously with the strength of the interaction parameter. The behavior expected from scaling arguments is checked by DMRG calculations.
---
PDF链接:
https://arxiv.org/pdf/709.1322