摘要翻译:
著名的Bernstein-Kushnirenko定理来自牛顿多面体理论,它将代数几何和混合体积理论联系起来。最近,作者发现了该定理在任何拟射影簇上的泛型代数方程组中的一个具有深远意义的推广。在本文中,我们回顾了这些结果及其在代数几何和凸几何中的应用。
---
英文标题:
《Algebraic equations and convex bodies》
---
作者:
Kiumars Kaveh, A.G. Khovanskii
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
The well-known Bernstein-Kushnirenko theorem from the theory of Newton polyhedra relates algebraic geometry and the theory of mixed volumes. Recently the authors have found a far-reaching generalization of this theorem to generic systems of algebraic equations on any quasi-projective variety. In the present note we review these results and their applications to algebraic geometry and convex geometry.
---
PDF链接:
https://arxiv.org/pdf/0812.4688