摘要翻译:
对于相对维数为1的Kawamata对数终端对,我们证明了Fujino和Mori在对数规范丛公式(也见Prokhorov和Shokurov)中的“分母定界”的类似式。作为一个应用,我们证明了对于一个Kodaira余维数为1且维数至多为3的klt对$(X,\delta)$,使得$\delta$的系数在DCC集$\Mathcal{a}$中,存在一个自然数$n$,它只依赖于$\Mathcal{a}$,对该自然数$n$(k_x+\delta)$向下取整会引起Iitaka纤维化。我们还证明了一般类型klt曲面的一个双分有界性结果。
---
英文标题:
《Effective log Iitaka fibrations for surfaces and threefolds》
---
作者:
Gueorgui Todorov
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We prove an analogue of Fujino and Mori's ``bounding the denominators'' in the log canonical bundle formula (see also Prokhorov and Shokurov) for Kawamata log terminal pairs of relative dimension one. As an application we prove that for a klt pair $(X,\Delta)$ of Kodaira codimension one and dimension at most three such that the coefficients of $\Delta$ are in a DCC set $\mathcal{A}$, there is a natural number $N$ that depends only on $\mathcal{A}$ for which the round down of $\N(K_X+\Delta)$ induces the Iitaka fibration. We also prove a birational boundedness result for klt surfaces of general type.
---
PDF链接:
https://arxiv.org/pdf/0805.3494