摘要翻译:
设X是光滑的三重立方。通过Clemens和Griffiths的一个定理,我们可以将中间雅可比J和Fano曲面F参数上升线与X关联起来。Fano曲面可以嵌入中间雅可比J中,其图像的上同调类是极小的。本文证明了如果X是泛型的,Fano曲面是J中唯一的极小类曲面。
---
英文标题:
《Minimal classes on the intermediate Jacobian of a generic cubic
threefold》
---
作者:
Andreas H\"oring
---
最新提交年份:
2018
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let X be a smooth cubic threefold. We can associate two objects to X: the intermediate Jacobian J and the Fano surface F parametrising lines on X. By a theorem of Clemens and Griffiths, the Fano surface can be embedded in the intermediate Jacobian and the cohomology class of its image is minimal. In this paper we show that if X is generic, the Fano surface is the only surface of minimal class in J.
---
PDF链接:
https://arxiv.org/pdf/0802.0978