全部版块 我的主页
论坛 经济学人 二区 外文文献专区
233 0
2022-04-03
摘要翻译:
本文给出了用神经网络控制伺服系统速度的实验结果。该控制策略采用基于人工神经网络(ANNs)的逆模型控制来实现。网络训练采用两种学习算法:Levenberg-Marquardt和Bayesian正则化。我们根据控制器跟随参考信号的正确操作和基于神经网络的控制器开发的控制努力来评估每种方法的泛化能力。
---
英文标题:
《Control Neuronal por Modelo Inverso de un Servosistema Usando Algoritmos
  de Aprendizaje Levenberg-Marquardt y Bayesiano》
---
作者:
Victor A. Rodriguez-Toro, Jaime E. Garzon, Jesus A. Lopez
---
最新提交年份:
2011
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Computational Engineering, Finance, and Science        计算工程、金融和科学
分类描述:Covers applications of computer science to the mathematical modeling of complex systems in the fields of science, engineering, and finance. Papers here are interdisciplinary and applications-oriented, focusing on techniques and tools that enable challenging computational simulations to be performed, for which the use of supercomputers or distributed computing platforms is often required. Includes material in ACM Subject Classes J.2, J.3, and J.4 (economics).
涵盖了计算机科学在科学、工程和金融领域复杂系统的数学建模中的应用。这里的论文是跨学科和面向应用的,集中在技术和工具,使挑战性的计算模拟能够执行,其中往往需要使用超级计算机或分布式计算平台。包括ACM学科课程J.2、J.3和J.4(经济学)中的材料。
--

---
英文摘要:
  In this paper we present the experimental results of the neural network control of a servo-system in order to control its speed. The control strategy is implemented by using an inverse-model control based on Artificial Neural Networks (ANNs). The network training was performed using two learning algorithms: Levenberg-Marquardt and Bayesian regularization. We evaluate the generalization capability for each method according to both the correct operation of the controller to follow the reference signal, and the control efforts developed by the ANN-based controller.
---
PDF链接:
https://arxiv.org/pdf/1111.4267
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群