摘要翻译:
设X是复曲面S上的P^1滚动(线丛L的紧致),并假定S具有零轨迹的全局二型光滑曲线C。如果曲线类是S上的分量而不是[C]的倍数,X的Donaldson-Thomas不变量为零。对于非零情况,当素场插入大于C时,不变量仅依赖于L在X中的解析邻域。
---
英文标题:
《Donaldson Thomas invariant of P^1 scroll》
---
作者:
Huai-Liang Chang
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
Let X be a P^1 scroll (a compactification of a line bundle L) over a complex surafce S and assume S has a global two form with zero loci a smooth curve C. The Donaldson Thomas invariants of X is shown to be zero if the curve class has is component on S not a multiple of [C]. For nonzero case, when the prime field insertion are above C, the invariant is shown to depend only on the analytic neighborhood of L in X.
---
PDF链接:
https://arxiv.org/pdf/0711.4529