摘要翻译:
对于正态线性模型变量选择问题,我们提出了基于完全Bayes公式的选择准则,并推广了Zellner的$G$-priver,允许$P>N$。先验公式的一个特例被认为产生了边际密度和贝叶斯因子的可处理的封闭形式,揭示了潜在利益的新的模型评估特征。
---
英文标题:
《Fully Bayes factors with a generalized g-prior》
---
作者:
Yuzo Maruyama, Edward I. George
---
最新提交年份:
2012
---
分类信息:
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
For the normal linear model variable selection problem, we propose selection criteria based on a fully Bayes formulation with a generalization of Zellner's $g$-prior which allows for $p>n$. A special case of the prior formulation is seen to yield tractable closed forms for marginal densities and Bayes factors which reveal new model evaluation characteristics of potential interest.
---
PDF链接:
https://arxiv.org/pdf/801.441