摘要翻译:
我们研究了一维任意子通过$\delta$-函数排斥势相互作用模型的性质。阐明了任意子场算符和多任意子波函数的准周期边界条件的结构。计算了周期边界条件和扭曲边界条件下包括粒子-空穴激励在内的低层激励的谱。利用共形场论的思想,我们得到了在临界温度t=0和小的有限温度下密度和场相关函数的大距离渐近性。我们的场关联函数表达式推广了文献中对简谐量子声子流体的结果。
---
英文标题:
《Correlation Functions of One-Dimensional Lieb-Liniger Anyons》
---
作者:
Ovidiu I. Patu, Vladimir E. Korepin, Dmitri V. Averin
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Quantum Physics 量子物理学
分类描述:Description coming soon
描述即将到来
--
---
英文摘要:
We have investigated the properties of a model of 1D anyons interacting through a $\delta$-function repulsive potential. The structure of the quasi-periodic boundary conditions for the anyonic field operators and the many-anyon wavefunctions is clarified. The spectrum of the low-lying excitations including the particle-hole excitations is calculated for periodic and twisted boundary conditions. Using the ideas of the conformal field theory we obtain the large-distance asymptotics of the density and field correlation function at the critical temperature T=0 and at small finite temperatures. Our expression for the field correlation function extends the results in the literature obtained for harmonic quantum anyonic fluids.
---
PDF链接:
https://arxiv.org/pdf/707.452