摘要翻译:
考虑一个紧致定向曲面$S$,属$G\GEQ0$和$M\GEQ0$purted。由Hamenst\'ADT定义的$S$列车轨道复合体是一个顶点为$S$上完全列车轨道的同位素类的1-复合体。Hamenst\'ADT表明,如果$3G-3+M\geq2$,映射类群在列车轨道复合体上的作用是不连续的和共紧的。对于排除的情况,即当$S$是一次击穿的环面或四次击穿的球面时,我们将证明相应的结果。为了解决这个问题,我们重新定义了这些表面的两个络合物。
---
英文标题:
《Train track complex of once-punctured torus and 4-punctured sphere》
---
作者:
Keita Ibaraki
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics        数学
二级分类:General Topology        一般拓扑
分类描述:Continuum theory, point-set topology, spaces with algebraic structure, foundations, dimension theory, local and global properties
连续统理论,点集拓扑,代数结构空间,基础,维数理论,局部和全局性质
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
  Consider a compact oriented surface $S$ of genus $g \geq 0$ and $m \geq 0$ punctured. The train track complex of $S$ which is defined by Hamenst\"adt is a 1-complex whose vertices are isotopy classes of complete train tracks on $S$. Hamenst\"adt shows that if $3g-3+m \geq 2$, the mapping class group acts properly discontinuously and cocompactly on the train track complex. We will prove corresponding results for the excluded case, namely when $S$ is a once-punctured torus or a 4-punctured sphere. To work this out, we redefinition of two complexes for these surfaces. 
---
PDF链接:
https://arxiv.org/pdf/0901.0747