摘要翻译:
利用张量代数解决了半定规划中的一个消元问题。研究了以对称矩阵仿射空间上的最小和最大特征值函数为约束条件的矩阵立方问题族。对所有可行实例的凸集给出了LMI表示,并从代数几何的角度研究了其边界。这推广了Parrilo关于k-椭圆和k-椭球的早期工作[12]。
---
英文标题:
《Matrix Cubes Parametrized by Eigenvalues》
---
作者:
Jiawang Nie and Bernd Sturmfels
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
An elimination problem in semidefinite programming is solved by means of tensor algebra. It concerns families of matrix cube problems whose constraints are the minimum and maximum eigenvalue function on an affine space of symmetric matrices. An LMI representation is given for the convex set of all feasible instances, and its boundary is studied from the perspective of algebraic geometry. This generalizes the earlier work [12] with Parrilo on k-ellipses and k-ellipsoids.
---
PDF链接:
https://arxiv.org/pdf/0804.4462