摘要翻译:
金融投资组合优化是数学、统计学、金融和计算文献中广泛研究的问题。它坚持确定与投资组合中持有的金融资产相关的权重的最佳组合。在实践中,它面临着各种数学的挑战。配方、参数、业务约束和复杂的金融工具。数据的经验性不再是片面的;从而反映上升和下降趋势,重复但无法识别的循环行为可能是由于资产交易的高频波动变动造成的。这种情况下的投资组合优化在理论和计算上都具有挑战性。本文提出了一种新的机制,通过将各种最优解编码到一个解库中来指导全局投资目标公式的搜索过程,从而达到最优解。它将单个求解者Agent的角色概念化,它们为解决方案库贡献最优解,一个从解决方案库学习的超级Agent求解器,从而反映了一种基于知识的计算指导Agent方法,用于调查、分析和获得最优解,以进行知情的投资决策。讨论了代表不同问题公式的求解代理类的概念理解,以及面向数学的确定性求解器,以及基于随机搜索驱动的进化和基于群体智能的最优权重技术。在模拟退火算法中提出了一种改进的邻域生成机制。通过引入控制摄动策略,使用决策矩阵生成邻域,将启发式知识和投资决策过程相关的金融文献中的人类专业知识纳入框架。
---
英文标题:
《Financial Portfolio Optimization: Computationally guided agents to
investigate, analyse and invest!?》
---
作者:
Ankit Dangi
---
最新提交年份:
2013
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
一级分类:Computer Science 计算机科学
二级分类:Computational Engineering, Finance, and Science 计算工程、金融和科学
分类描述:Covers applications of computer science to the mathematical modeling of complex systems in the fields of science, engineering, and finance. Papers here are interdisciplinary and applications-oriented, focusing on techniques and tools that enable challenging computational simulations to be performed, for which the use of supercomputers or distributed computing platforms is often required. Includes material in ACM Subject Classes J.2, J.3, and J.4 (economics).
涵盖了计算机科学在科学、工程和金融领域复杂系统的数学建模中的应用。这里的论文是跨学科和面向应用的,集中在技术和工具,使挑战性的计算模拟能够执行,其中往往需要使用超级计算机或分布式计算平台。包括ACM学科课程J.2、J.3和J.4(经济学)中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Neural and Evolutionary Computing 神经与进化计算
分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5.
涵盖
神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Statistics 统计学
二级分类:Machine Learning
机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
英文摘要:
Financial portfolio optimization is a widely studied problem in mathematics, statistics, financial and computational literature. It adheres to determining an optimal combination of weights associated with financial assets held in a portfolio. In practice, it faces challenges by virtue of varying math. formulations, parameters, business constraints and complex financial instruments. Empirical nature of data is no longer one-sided; thereby reflecting upside and downside trends with repeated yet unidentifiable cyclic behaviours potentially caused due to high frequency volatile movements in asset trades. Portfolio optimization under such circumstances is theoretically and computationally challenging. This work presents a novel mechanism to reach an optimal solution by encoding a variety of optimal solutions in a solution bank to guide the search process for the global investment objective formulation. It conceptualizes the role of individual solver agents that contribute optimal solutions to a bank of solutions, a super-agent solver that learns from the solution bank, and, thus reflects a knowledge-based computationally guided agents approach to investigate, analyse and reach to optimal solution for informed investment decisions. Conceptual understanding of classes of solver agents that represent varying problem formulations and, mathematically oriented deterministic solvers along with stochastic-search driven evolutionary and swarm-intelligence based techniques for optimal weights are discussed. Algorithmic implementation is presented by an enhanced neighbourhood generation mechanism in Simulated Annealing algorithm. A framework for inclusion of heuristic knowledge and human expertise from financial literature related to investment decision making process is reflected via introduction of controlled perturbation strategies using a decision matrix for neighbourhood generation.
---
PDF链接:
https://arxiv.org/pdf/1301.4194