摘要翻译:
研究了属于不定二次型的积分正交群的交换子群。对于代数几何中模空间构造中的许多群,特别是K3曲面的模,我们证明了该交换子的指数为2。我们给出了模形式和一些模空间的基本群的计算的应用。
---
英文标题:
《Abelianisation of orthogonal groups and the fundamental group of modular
varieties》
---
作者:
V. Gritsenko, K. Hulek and G.K. Sankaran
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We study the commutator subgroup of integral orthogonal groups belonging to indefinite quadratic forms. We show that the index of this commutator is 2 for many groups that occur in the construction of moduli spaces in algebraic geometry, in particular the moduli of K3 surfaces. We give applications to modular forms and to computing the fundamental groups of some moduli spaces.
---
PDF链接:
https://arxiv.org/pdf/0810.1614