摘要翻译:
本文提出了一种基于贝叶斯风险的一步预测控制策略来测量和控制储能系统中的隐私泄漏。该控制器采用三回路储能模型来估计能量状态,以考虑稳态能量损失。通过数值实验,利用最先进的对抗算法,用实际家庭消费数据对控制器进行了评估。结果表明,储能系统的状态估计对控制器的性能有很大的影响。研究结果还表明,使用能量存储系统可以有效地减少隐私泄露,但以能量损失为代价。
---
英文标题:
《Privacy-preserving smart meter control strategy including energy storage
losses》
---
作者:
Ramana R. Avula, Tobias J. Oechtering and Daniel M{\aa}nsson
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
Privacy-preserving smart meter control strategies proposed in the literature so far make some ideal assumptions such as instantaneous control without delay, lossless energy storage systems etc. In this paper, we present a one-step-ahead predictive control strategy using Bayesian risk to measure and control privacy leakage with an energy storage system. The controller estimates energy state using a three-circuit energy storage model to account for steady-state energy losses. With numerical experiments, the controller is evaluated with real household consumption data using a state-of-the-art adversarial algorithm. Results show that the state estimation of the energy storage system significantly affects the controller's performance. The results also show that the privacy leakage can be effectively reduced using an energy storage system but at the expense of energy loss.
---
PDF链接:
https://arxiv.org/pdf/1803.07864