全部版块 我的主页
论坛 经济学人 二区 外文文献专区
197 0
2022-04-06
摘要翻译:
与搜索引擎交互的日志显示,用户经常重新定义他们的查询。检查这些重定义会发现,精确查询焦点的建议是有帮助的,就像那些基于原始查询扩展的建议一样。但它也表明,表达相对于原始查询的一些主题转移的查询可以帮助用户更快地访问他们需要的信息。我们提出了一种从过去用户的查询日志中识别聚焦或转移初始查询主题的查询的方法。该方法结合了基于点击、基于主题和基于会话的排序策略,并使用监督学习来最大化查询和推荐之间的语义相似性,同时使它们多样化。我们用一个日本web搜索引擎的查询/点击日志对我们的方法进行了评估,我们表明三种方法的结合比单独使用任何一种方法都要好得多。
---
英文标题:
《Learning to Rank Query Recommendations by Semantic Similarities》
---
作者:
Sumio Fujita, Georges Dupret and Ricardo Baeza-Yates
---
最新提交年份:
2012
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Human-Computer Interaction        人机交互
分类描述:Covers human factors, user interfaces, and collaborative computing. Roughly includes material in ACM Subject Classes H.1.2 and all of H.5, except for H.5.1, which is more likely to have Multimedia as the primary subject area.
包括人为因素、用户界面和协作计算。大致包括ACM学科课程H.1.2和所有H.5中的材料,除了H.5.1,它更有可能以多媒体作为主要学科领域。
--
一级分类:Computer Science        计算机科学
二级分类:Information Retrieval        信息检索
分类描述:Covers indexing, dictionaries, retrieval, content and analysis. Roughly includes material in ACM Subject Classes H.3.0, H.3.1, H.3.2, H.3.3, and H.3.4.
涵盖索引,字典,检索,内容和分析。大致包括ACM主题课程H.3.0、H.3.1、H.3.2、H.3.3和H.3.4中的材料。
--

---
英文摘要:
  Logs of the interactions with a search engine show that users often reformulate their queries. Examining these reformulations shows that recommendations that precise the focus of a query are helpful, like those based on expansions of the original queries. But it also shows that queries that express some topical shift with respect to the original query can help user access more rapidly the information they need. We propose a method to identify from the query logs of past users queries that either focus or shift the initial query topic. This method combines various click-based, topic-based and session based ranking strategies and uses supervised learning in order to maximize the semantic similarities between the query and the recommendations, while at the same diversifying them. We evaluate our method using the query/click logs of a Japanese web search engine and we show that the combination of the three methods proposed is significantly better than any of them taken individually.
---
PDF链接:
https://arxiv.org/pdf/1204.2712
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群