摘要翻译:
本文讨论了经典Lauritzen-Wermuth-Frydenberg解释下的链图。证明了对具有$D$参数的链图$G$进行因子分解的正则高斯分布对$\MathBB{R}^D$具有正的Lebesgue测度,而对$G$进行因子分解但不忠实于它的正则高斯分布对$\MathBB{R}^D$具有零的Lebesgue测度。这意味着,在所描述的测度理论意义上,几乎所有关于$G$分解的正则高斯分布都忠实于它。
---
英文标题:
《Faithfulness in Chain Graphs: The Gaussian Case》
---
作者:
Jose M. Pe\~na
---
最新提交年份:
2010
---
分类信息:
一级分类:Statistics 统计学
二级分类:Machine Learning
机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
This paper deals with chain graphs under the classic Lauritzen-Wermuth-Frydenberg interpretation. We prove that the regular Gaussian distributions that factorize with respect to a chain graph $G$ with $d$ parameters have positive Lebesgue measure with respect to $\mathbb{R}^d$, whereas those that factorize with respect to $G$ but are not faithful to it have zero Lebesgue measure with respect to $\mathbb{R}^d$. This means that, in the measure-theoretic sense described, almost all the regular Gaussian distributions that factorize with respect to $G$ are faithful to it.
---
PDF链接:
https://arxiv.org/pdf/1008.2277