摘要翻译:
我们提出了一种自适应成像技术,它通过光学计算场景高光谱图像的低阶近似,将其概念化为矩阵。该技术的核心是两个测量算子的光学实现:光谱编码成像仪和空间编码光谱仪。通过两种算子之间的迭代,我们证明了只需几次迭代就可以自适应地计算出高光谱图像的顶部奇异向量和奇异值。我们提出了一个光学设计,利用瞳孔平面编码来实现这两个操作,并用实验室原型展示了几个引人注目的结果来证明所提出的高光谱成像器的有效性。
---
英文标题:
《KRISM --- Krylov Subspace-based Optical Computing of Hyperspectral
Images》
---
作者:
Vishwanath Saragadam, Aswin C. Sankaranarayanan
---
最新提交年份:
2019
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Image and Video Processing 图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Computer Vision and Pattern Recognition 计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
---
英文摘要:
We present an adaptive imaging technique that optically computes a low-rank approximation of a scene's hyperspectral image, conceptualized as a matrix. Central to the proposed technique is the optical implementation of two measurement operators: a spectrally-coded imager and a spatially-coded spectrometer. By iterating between the two operators, we show that the top singular vectors and singular values of a hyperspectral image can be adaptively and optically computed with only a few iterations. We present an optical design that uses pupil plane coding for implementing the two operations and show several compelling results using a lab prototype to demonstrate the effectiveness of the proposed hyperspectral imager.
---
PDF链接:
https://arxiv.org/pdf/1801.09343