摘要翻译:
本文是作者《方案的扩大》(Log.Anal.1(2007),No.1,1-60)一文的继续,主要研究了etale上同调、代数圈和动机在超积扩大下的性质。其主要动机是寻找方法将关于etale上同调和代数圈的陈述从特征零转移到正特征,反之亦然。我们给出了etale上同调中Betti数的$L$独立性的一个应用和代数圈复杂性的应用。
---
英文标题:
《Etale and motivic cohomology and ultraproducts of schemes》
---
作者:
Lars Br\"unjes and Christian Serp\'e
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Logic        逻辑
分类描述:Logic, set theory, point-set topology, formal mathematics
逻辑,集合论,点集拓扑,形式数学
--
---
英文摘要:
  This paper is a continuation of the authors article "Enlargements of schemes" (Log. Anal.1 (2007), no. 1, 1-60) We mainly study the behaviour of etale cohomology, algebraic cycles and motives under ultraproducts respectively enlargements. The main motivation for that is to find methods to transfer statements about etale cohomology and algebraic cycles from characteristic zero to positive characteristic and vice versa. We give one application to the independence of $l$ of Betti numbers in etale cohomology and applications to the complexity of algebraic cycles. 
---
PDF链接:
https://arxiv.org/pdf/0807.1007