全部版块 我的主页
论坛 经济学人 二区 外文文献专区
418 0
2022-04-07
摘要翻译:
本文结合链接分析和内容分析,研究了网络数据中的社区检测问题。现有的工作大多通过生成模型将链接和内容信息结合起来。现有方法有两个主要缺点。首先,他们假设在两个节点之间建立链接的概率仅由节点的社区成员身份决定;然而,其他因素(例如受欢迎程度)也可能影响链接模式。其次,它们使用生成模型来建模单个节点的内容,而这些生成模型容易受到与社区无关的内容属性的影响。我们提出了一个结合链接和内容信息进行社区检测的贝叶斯框架,明确地解决了这些缺点。提出了一种新的链路模型,在确定两个节点之间的链路时引入一个随机变量来捕捉节点的受欢迎程度;利用判别模型根据节点的内容确定节点的社区成员资格。为了有效的贝叶斯推理,提出了一种近似推理算法。我们的实证研究表明,该框架在结合链接和内容信息进行社区检测方面优于现有的几种方法。
---
英文标题:
《A Bayesian Framework for Community Detection Integrating Content and
  Link》
---
作者:
Tianbao Yang, Rong Jin, Yun Chi, Shenghuo Zhu
---
最新提交年份:
2012
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Social and Information Networks        社会和信息网络
分类描述:Covers the design, analysis, and modeling of social and information networks, including their applications for on-line information access, communication, and interaction, and their roles as datasets in the exploration of questions in these and other domains, including connections to the social and biological sciences. Analysis and modeling of such networks includes topics in ACM Subject classes F.2, G.2, G.3, H.2, and I.2; applications in computing include topics in H.3, H.4, and H.5; and applications at the interface of computing and other disciplines include topics in J.1--J.7. Papers on computer communication systems and network protocols (e.g. TCP/IP) are generally a closer fit to the Networking and Internet Architecture (cs.NI) category.
涵盖社会和信息网络的设计、分析和建模,包括它们在联机信息访问、通信和交互方面的应用,以及它们作为数据集在这些领域和其他领域的问题探索中的作用,包括与社会和生物科学的联系。这类网络的分析和建模包括ACM学科类F.2、G.2、G.3、H.2和I.2的主题;计算应用包括H.3、H.4和H.5中的主题;计算和其他学科接口的应用程序包括J.1-J.7中的主题。关于计算机通信系统和网络协议(例如TCP/IP)的论文通常更适合网络和因特网体系结构(CS.NI)类别。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Physics        物理学
二级分类:Physics and Society        物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--

---
英文摘要:
  This paper addresses the problem of community detection in networked data that combines link and content analysis. Most existing work combines link and content information by a generative model. There are two major shortcomings with the existing approaches. First, they assume that the probability of creating a link between two nodes is determined only by the community memberships of the nodes; however other factors (e.g. popularity) could also affect the link pattern. Second, they use generative models to model the content of individual nodes, whereas these generative models are vulnerable to the content attributes that are irrelevant to communities. We propose a Bayesian framework for combining link and content information for community detection that explicitly addresses these shortcomings. A new link model is presented that introduces a random variable to capture the node popularity when deciding the link between two nodes; a discriminative model is used to determine the community membership of a node by its content. An approximate inference algorithm is presented for efficient Bayesian inference. Our empirical study shows that the proposed framework outperforms several state-of-theart approaches in combining link and content information for community detection.
---
PDF链接:
https://arxiv.org/pdf/1205.2603
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群