摘要翻译:
应用自相似因子近似方法计算了O(N)-对称phi^4理论和Ising玻璃的临界指数。结果表明,该方法在计算临界指数方面比其它已知的级数求和方法简单得多,同时也得到了与其它较为复杂的数值方法一致的结果。自相似因子近似法的主要优点是它非常简单和高精度的结合。
---
英文标题:
《Calculation of critical exponents by self-similar factor approximants》
---
作者:
V.I. Yukalov and E.P. Yukalova
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics        物理学
二级分类:High Energy Physics - Phenomenology        高能物理-现象学
分类描述:Theoretical particle physics and its interrelation with experiment. Prediction of particle physics observables: models, effective field theories, calculation techniques. Particle physics: analysis of theory through experimental results.
理论粒子物理及其与实验的相互关系。粒子物理可观测物的预测:模型,有效场论,计算技术。粒子物理:通过实验结果分析理论。
--
---
英文摘要:
  The method of self-similar factor approximants is applied to calculating the critical exponents of the O(N)-symmetric phi^4 theory and of the Ising glass. It is demonstrated that this method, being much simpler than other known techniques of series summation in calculating the critical exponents, at the same time, yields the results that are in very good agreement with those of other rather complicated numerical methods. The principal advantage of the method of self-similar factor approximants is the combination of its extraordinary simplicity and high accuracy. 
---
PDF链接:
https://arxiv.org/pdf/704.2125