全部版块 我的主页
论坛 经济学人 二区 外文文献专区
548 0
2022-04-08
摘要翻译:
目的:抑制MR图像中的运动伪影是一项具有挑战性的任务。本文的目的是利用数据驱动的深度学习方法开发一种独立的新技术来抑制MR图像中的运动伪影。方法:采用深度学习卷积神经网络(CNN)去除脑MR图像中的运动伪影。一个CNN在模拟运动损坏的图像上训练,以识别和抑制由于运动引起的人工制品。该网络是一个编码器-解码器CNN架构,其中编码器将运动损坏的图像分解成一组特征映射。然后由解码器网络组合特征映射以生成运动校正图像。该网络在一个看不见的模拟数据集和一个实验的、运动损坏的活体大脑数据集上进行了测试。结果:训练后的网络能够抑制模拟运动损伤图像中的运动伪影,运动校正图像的平均百分率误差为2.69%,标准偏差为0.95%。该网络能够有效地抑制实验数据中的运动伪影,证明了训练后网络的泛化能力。结论:一种新的、通用的运动校正技术可以抑制运动损伤MR图像中的运动伪影。该技术是一种独立的后处理方法,不干扰数据采集或重建参数,因此适用于多种MR序列。
---
英文标题:
《MoCoNet: Motion Correction in 3D MPRAGE images using a Convolutional
  Neural Network approach》
---
作者:
Kamlesh Pawar, Zhaolin Chen, N. Jon Shah, and Gary F. Egan
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Image and Video Processing        图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
一级分类:Computer Science        计算机科学
二级分类:Computer Vision and Pattern Recognition        计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--

---
英文摘要:
  Purpose: The suppression of motion artefacts from MR images is a challenging task. The purpose of this paper is to develop a standalone novel technique to suppress motion artefacts from MR images using a data-driven deep learning approach. Methods: A deep learning convolutional neural network (CNN) was developed to remove motion artefacts in brain MR images. A CNN was trained on simulated motion corrupted images to identify and suppress artefacts due to the motion. The network was an encoder-decoder CNN architecture where the encoder decomposed the motion corrupted images into a set of feature maps. The feature maps were then combined by the decoder network to generate a motion-corrected image. The network was tested on an unseen simulated dataset and an experimental, motion corrupted in vivo brain dataset. Results: The trained network was able to suppress the motion artefacts in the simulated motion corrupted images, and the mean percentage error in the motion corrected images was 2.69 % with a standard deviation of 0.95 %. The network was able to effectively suppress the motion artefacts from the experimental dataset, demonstrating the generalisation capability of the trained network. Conclusion: A novel and generic motion correction technique has been developed that can suppress motion artefacts from motion corrupted MR images. The proposed technique is a standalone post-processing method that does not interfere with data acquisition or reconstruction parameters, thus making it suitable for a multitude of MR sequences.
---
PDF链接:
https://arxiv.org/pdf/1807.10831
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群