摘要翻译:
本文对Gatheral和Jacquier最近关于隐含波动率面的显式无套利参数化的工作进行了推广。利用Roper最近的分析,我们还广泛讨论了套利自由度的概念和Roger Lee的矩公式。我们进一步展示了一个与Gatheral的SVI参数不同的无套利波动率表面。
---
英文标题:
《Generalised arbitrage-free SVI volatility surfaces》
---
作者:
Gaoyue Guo, Antoine Jacquier, Claude Martini, Leo Neufcourt
---
最新提交年份:
2016
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
英文摘要:
In this article we propose a generalisation of the recent work of Gatheral and Jacquier on explicit arbitrage-free parameterisations of implied volatility surfaces. We also discuss extensively the notion of arbitrage freeness and Roger Lee's moment formula using the recent analysis by Roper. We further exhibit an arbitrage-free volatility surface different from Gatheral's SVI parameterisation.
---
PDF链接:
https://arxiv.org/pdf/1210.7111