摘要翻译:
给出了任意维数复射影流形上主Higgs G-丛E的Miyaoka型半可半性判据,即证明E是半可半性的,其伴随丛的第二Chern类消失当且仅当由G的抛物子群的性质得到的某些线丛是数值有效的。我们还根据我们最近引入的Higgs向量束的数值有效性的概念给出了可供选择的刻画。
---
英文标题:
《Semistable principal Higgs bundles》
---
作者:
Ugo Bruzzo, Beatriz Grana Otero
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We give a Miyaoka-type semistability criterion for principal Higgs G-bundles E on complex projective manifolds of any dimension, i.e., we prove that E is semistable and the second Chern class of its adjoint bundle vanishes if and only if certain line bundles, obtained from the characters of the parabolic subgroups of G, are numerically effective. We also give alternative characterizations in terms of a notion of numerical effectiveness of Higgs vector bundles we have recently introduced.
---
PDF链接:
https://arxiv.org/pdf/0809.3936