摘要翻译:
众所周知,文本压缩可以通过基于到当前符号为止的历史来预测文本数据流中的下一个符号来实现。预测越好,下一个符号的条件概率分布就越偏斜,需要分配来表示下一个符号的码字就越短。相反的方向呢?假设我们有一个可以压缩文本流的黑盒。它可以用来预测流中的下一个符号吗?我们提出了一个基于压缩数据长度的准则,并用它来预测下一个符号。我们实证检验了预测错误率及其与一些压缩参数的依赖关系。
---
英文标题:
《Prediction by Compression》
---
作者:
Joel Ratsaby
---
最新提交年份:
2010
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Information Theory 信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Mathematics 数学
二级分类:Information Theory 信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
---
英文摘要:
It is well known that text compression can be achieved by predicting the next symbol in the stream of text data based on the history seen up to the current symbol. The better the prediction the more skewed the conditional probability distribution of the next symbol and the shorter the codeword that needs to be assigned to represent this next symbol. What about the opposite direction ? suppose we have a black box that can compress text stream. Can it be used to predict the next symbol in the stream ? We introduce a criterion based on the length of the compressed data and use it to predict the next symbol. We examine empirically the prediction error rate and its dependency on some compression parameters.
---
PDF链接:
https://arxiv.org/pdf/1008.5078