摘要翻译:
研究了同时进行无线信息和功率传输(SWIPT)的多输入单输出(MISO)下行链路网络中的鲁棒波束形成问题。采用时间切换的方式分别进行能量捕获和信息解码,在信道状态信息不完全和用户能量捕获机会约束的情况下,以最大和速率为目标。针对获取能量最小的约束条件不一定要时时满足的情况,本文采用机会约束对其建模,并利用Bernstein不等式将其等价转化为确定性约束。本文将非理想CSI的最大和率问题看作非凸问题,将其等价地转化为求最小均方误差(MMSE)的期望,并提出了一种交替优化(AO)算法,将优化问题分解为两个子问题:发射波束形成器的设计和切换时间的划分。仿真结果表明,与现有的非鲁棒方案相比,该方案的性能有所提高。
---
英文标题:
《Robust Beamforming for SWIPT System with Chance Constraints》
---
作者:
Yinglei Teng, Wanxin Zhao, Mei Yan, Yong Zhang, Mei Song
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
The robust beamforming problem in multiple-input single-output (MISO) downlink networks of simultaneous wireless information and power transfer (SWIPT) is studied in this paper. Adopting the time switching fashion to perform energy harvesting and information decoding respectively, we aim at maximizing the sum rate under imperfect channel state information (CSI) and the chance constraints of users' harvested energy. In view of the fact that the constraints for minimal harvested energy is not necessary to meet from time to time, this paper adopts chance constraint to model it and uses the Bernstein inequality to transform it into deterministic constraints equivalently. Recognizing the maximum sum rate problem of imperfect CSI as nonconvex problem, we transform it into finding the expectation of minimum mean square error (MMSE) equivalently in this paper, and an alternative optimization (AO) algorithm is proposed to decompose the optimization problem into two sub-problems: the transmit beamformer design and the division of switching time. The simulation results show the performance gains compared to non-robust state of the art schemes.
---
PDF链接:
https://arxiv.org/pdf/1803.07713