摘要翻译:
对于任意基方案S上的分裂半单Chevalley群方案G,我们通过G的伴随作用来考虑G的商。我们详细地研究了S上G的结构,给出了具有李代数T的极大环面T和相关Weyl群W,证明了除2-扭基上的群sp_2n外,Chevalley态射T/W->G/G是同构的。在这种情况下,这个态射只是占优势的,我们显式地计算它。我们计算了其它一些经典情况下的伴随商,给出了商G->g/g的形成随S的基变化而交换或不交换的例子。
---
英文标题:
《On the adjoint quotient of Chevalley groups over arbitrary base schemes》
---
作者:
Pierre-Emmanuel Chaput (LMJL), Matthieu Romagny (IMJ)
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
  For a split semisimple Chevalley group scheme G with Lie algebra g over an arbitrary base scheme S, we consider the quotient of g by the adjoint action of G. We study in detail the structure of g over S. Given a maximal torus T with Lie algebra t and associated Weyl group W, we show that the Chevalley morphism t/W -> g/G is an isomorphism except for the group Sp_{2n} over a base with 2-torsion. In this case this morphism is only dominant and we compute it explicitly. We compute the adjoint quotient in some other classical cases, yielding examples where the formation of the quotient g -> g/G commutes, or does not commute, with base change on S. 
---
PDF链接:
https://arxiv.org/pdf/0805.2140