全部版块 我的主页
论坛 经济学人 二区 外文文献专区
403 0
2022-04-10
摘要翻译:
电动汽车(EVs)的充电负荷被建模为可延迟负荷,这意味着电能消耗可以转移到不同的时间窗口以实现不同的电网目标。在局部社区场景中,电动汽车被视为可控存储设备,与其他微电网部件,如建筑负载、可再生能源发电、电池储能系统等一起进行全局优化。然而,驾驶员行为的不确定性对微电网运营的成本效益有着巨大的影响,这在以往的文献中没有得到充分的探讨。本文提出了一种社区微电网中的电动汽车预测管理策略,并利用系统基本负载、太阳能发电量和电动汽车充电行为的真实数据集对其进行了评估。建立了低成本电动汽车管理的两阶段运行模型,即第一阶段批发市场参与,第二阶段负荷分布跟随。采用预测控制策略,包括后退时域控制,以分散的方式解决能量分配问题。实验结果表明,该方法能显著降低系统总能耗,使系统总负荷的爬升指数降低56.3%。
---
英文标题:
《Predictive Management of Electric Vehicles in a Community Microgrid》
---
作者:
Bin Wang, Dai Wang, Cy Chan, Rongxin Yin and Doug Black
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Mathematics        数学
二级分类:Optimization and Control        优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--

---
英文摘要:
  The charging load from Electric vehicles (EVs) is modeled as deferrable load, meaning that the power consumption can be shifted to different time windows to achieve various grid objectives. In local community scenarios, EVs are considered as controllable storage devices in a global optimization problem together with other microgrid components, such as the building load, renewable generations, and battery energy storage system, etc. However, the uncertainties in the driver behaviors have tremendous impact on the cost effectiveness of microgrid operations, which has not been fully explored in previous literature. In this paper, we propose a predictive EV management strategy in a community microgrid, and evaluate it using real-world datasets of system baseload, solar generation and EV charging behaviors. A two-stage operation model is established for cost-effective EV management, i.e. wholesale market participation in the first stage and load profile following in the second stage. Predictive control strategies, including receding horizon control, are adapted to solve the energy allocation problem in a decentralized fashion. The experimental results indicate the proposed approach can considerably reduce the total energy cost and decrease the ramping index of total system load up to 56.3%.
---
PDF链接:
https://arxiv.org/pdf/1802.01512
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群