摘要翻译:
研究了特征为零的非阿基米德域上多环上微分模的一些数值不变量的变分性质,这些不变量度量局部水平截面的收敛性。这扩展了Christol、Dwork、Robba、Young等人在一维情况下的先前工作。我们的结果不需要正剩余特征;因此,它们除了与等晶Swan导体的研究有关外,还与复流形上平坦亚纯连接的形式分类密切相关。
---
英文标题:
《Differential modules on p-adic polyannuli》
---
作者:
Kiran S. Kedlaya and Liang Xiao
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We consider variational properties of some numerical invariants, measuring convergence of local horizontal sections, associated to differential modules on polyannuli over a nonarchimedean field of characteristic zero. This extends prior work in the one-dimensional case of Christol, Dwork, Robba, Young, et al. Our results do not require positive residue characteristic; thus besides their relevance to the study of Swan conductors for isocrystals, they are germane to the formal classification of flat meromorphic connections on complex manifolds.
---
PDF链接:
https://arxiv.org/pdf/0804.1495