全部版块 我的主页
论坛 经济学人 二区 外文文献专区
313 0
2022-04-11
摘要翻译:
基于实验数据的系统辨识对于基于模型的控制器设计起着至关重要的作用。由于过程模型的复杂性,从第一性原理推导过程模型往往是困难的。任何控制和监测系统开发的第一阶段是系统的辨识和建模。每个模型都是在特定控制问题的背景下开发的。因此,需要一个通用的系统识别框架。所提出的框架应该能够根据控制目标和系统行为的性质来适应和强调不同的性质。因此,系统辨识是根据输入输出数据辨识系统模型的一种有价值的工具,可用于控制器的设计。本文采用统计模型辨识、过程反应曲线法、ARX模型、遗传算法和神经网络、模糊逻辑等方法对相互作用和非相互作用的罐式过程进行了传递函数模型辨识。所采用的辨识技术和建模容易发生参数变化和扰动。利用所提出的方法从实时实验数据中识别出相互作用过程和非相互作用过程的数学模型和智能模型。
---
英文标题:
《System identification and modeling for interacting and non-interacting
  tank systems using intelligent techniques》
---
作者:
N. S. Bhuvaneswari, R. Praveena, R. Divya
---
最新提交年份:
2012
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Systems and Control        系统与控制
分类描述:cs.SY is an alias for eess.SY. This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
cs.sy是eess.sy的别名。本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--

---
英文摘要:
  System identification from the experimental data plays a vital role for model based controller design. Derivation of process model from first principles is often difficult due to its complexity. The first stage in the development of any control and monitoring system is the identification and modeling of the system. Each model is developed within the context of a specific control problem. Thus, the need for a general system identification framework is warranted. The proposed framework should be able to adapt and emphasize different properties based on the control objective and the nature of the behavior of the system. Therefore, system identification has been a valuable tool in identifying the model of the system based on the input and output data for the design of the controller. The present work is concerned with the identification of transfer function models using statistical model identification, process reaction curve method, ARX model, genetic algorithm and modeling using neural network and fuzzy logic for interacting and non interacting tank process. The identification technique and modeling used is prone to parameter change & disturbance. The proposed methods are used for identifying the mathematical model and intelligent model of interacting and non interacting process from the real time experimental data.
---
PDF链接:
https://arxiv.org/pdf/1208.1103
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群