摘要翻译:
我们考虑一个保险公司,当保险费率是一个有界的非负随机函数$C_\ZS{t}$,保险公司的资本投资于一个风险资产,该资产的价格服从几何布朗运动,平均收益$a$,波动率$Sigma>0$.如果$\beta:=2a/\sigma^2-1>0$,当初始禀赋$u$趋于无穷大时,我们得到了破产概率$\psi(u)$的精确的渐近上下界,即对于足够大的$u$,我们证明了$c_*u^{-\beta}\le\psi(u)\le c^*u^{-\beta}$。此外,如果$C_\ZS{t}=C^*E^{\γt}$具有$\γ\le0$,我们得到了破产概率的精确渐近性,即$\psi(u)\sim u^{-\beta}$。如果$\beta\le0$,我们证明对于任何$u\ge0$,$\psi(u)=1$。
---
英文标题:
《Ruin probability in the presence of risky investments》
---
作者:
Serguei Pergamenchtchikov (LMRS), Zeitouny Omar (LMRS)
---
最新提交年份:
2010
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
英文摘要:
We consider an insurance company in the case when the premium rate is a bounded non-negative random function $c_\zs{t}$ and the capital of the insurance company is invested in a risky asset whose price follows a geometric Brownian motion with mean return $a$ and volatility $\sigma>0$. If $\beta:=2a/\sigma^2-1>0$ we find exact the asymptotic upper and lower bounds for the ruin probability $\Psi(u)$ as the initial endowment $u$ tends to infinity, i.e. we show that $C_*u^{-\beta}\le\Psi(u)\le C^*u^{-\beta}$ for sufficiently large $u$. Moreover if $c_\zs{t}=c^*e^{\gamma t}$ with $\gamma\le 0$ we find the exact asymptotics of the ruin probability, namely $\Psi(u)\sim u^{-\beta}$. If $\beta\le 0$, we show that $\Psi(u)=1$ for any $u\ge 0$.
---
PDF链接:
https://arxiv.org/pdf/1011.1329