摘要翻译:
如果上同调群$h^M(M,\ll)$的维数可以直接由上同调代数$h^*(M,\c)$计算出来,则光滑复代数簇$M$上的秩一局部系统$\ll$大致是可容许的。如果$k\ge0$是$\a$中包含所有多重性点至少3的最小行数,我们就说一个行排列$\a$是$\cc_k$类型。我们证明了如果$\a$是$\CC_K$对于$K\LEQ2$的类中的一个行排列,那么行排列补码$M$上的任何一个秩一的局部系统$\LL$都是允许的。得到了类$\CC_3$的部分结果。
---
英文标题:
《Admissible local systems for a class of line arrangements》
---
作者:
Shaheen Nazir and Zahid Raza
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
A rank one local system $\LL$ on a smooth complex algebraic variety $M$ is admissible roughly speaking if the dimension of the cohomology groups $H^m(M,\LL)$ can be computed directly from the cohomology algebra $H^*(M,\C)$. We say that a line arrangement $\A$ is of type $\CC_k$ if $k \ge 0 $ is the minimal number of lines in $\A$ containing all the points of multiplicity at least 3. We show that if $\A$ is a line arrangement in the classes $\CC_k$ for $k\leq 2$, then any rank one local system $\LL$ on the line arrangement complement $M$ is admissible. Partial results are obtained for the class $\CC_3$.
---
PDF链接:
https://arxiv.org/pdf/0801.3512