摘要翻译:
导出了非马尔可夫量子随机输运过程累积量母函数(CGF)的一般表达式。CGF的长时间限制是由记忆核预解的一个控制极点决定的,我们利用递归方法从该控制极点提取电流的零频累积量。有限频率噪声不仅用预解决方案来表示,而且还用系统-环境的初始相关来表示。作为一个例子,我们考虑电子通过耗散双量子点的输运,研究耗散对高阶零频累积量和有限频噪声的影响。
---
英文标题:
《Counting Statistics of Non-Markovian Quantum Stochastic Processes》
---
作者:
Christian Flindt, Tomas Novotny, Alessandro Braggio, Maura Sassetti,
  Antti-Pekka Jauho
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics        物理学
二级分类:Mesoscale and Nanoscale Physics        介观和纳米物理
分类描述:Semiconducting nanostructures: quantum dots, wires, and wells. Single electronics, spintronics, 2d electron gases, quantum Hall effect, nanotubes, graphene, plasmonic nanostructures
半导体纳米结构:量子点、线和阱。单电子学,自旋电子学,二维电子气,量子霍尔效应,纳米管,石墨烯,等离子纳米结构
--
一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
  We derive a general expression for the cumulant generating function (CGF) of non-Markovian quantum stochastic transport processes. The long-time limit of the CGF is determined by a single dominating pole of the resolvent of the memory kernel from which we extract the zero-frequency cumulants of the current using a recursive scheme. The finite-frequency noise is expressed not only in terms of the resolvent, but also initial system-environment correlations. As an illustrative example we consider electron transport through a dissipative double quantum dot for which we study the effects of dissipation on the zero-frequency cumulants of high orders and the finite-frequency noise. 
---
PDF链接:
https://arxiv.org/pdf/801.0661