摘要翻译:
在Kisin意义下,我们考虑了具有绝对Galois群有限域上的值的二维表示的有限平坦模型的模空间,该绝对Galois群是$MathBB{Q}_p$的完全分支扩张。我们确定了这个空间的连通分量,并描述了它的不可约分量。这些结果证明了Kisin猜想的修正版本。
---
英文标题:
《On the structure of some moduli spaces of finite flat group schemes》
---
作者:
Eugen Hellmann
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We consider the moduli space, in the sense of Kisin, of finite flat models of a 2-dimensional representation with values in a finite field of the absolute Galois group of a totally ramified extension of $mathbb{Q}_p$. We determine the connected components of this space and describe its irreducible components. These results prove a modified version of a conjecture of Kisin.
---
PDF链接:
https://arxiv.org/pdf/0810.5277