摘要翻译:
Back-n是中国散裂中子源(CSNS)的白中子实验装置。一次质子束的时间结构使其完全适用于用飞行时间法测量中子能量。我们在为Back-N中的所有七个探测器设计的通用读出电子学上实现了TOF测量的电子学。电子学部分是基于PXIe(外设元件互连Express eXtensions for Instrumentation)平台,由FDM(现场数字化模块)、TCM(触发时钟模块)和SCM(信号调理模块)组成。与CSNS加速器同步的T0信号代表靶的中子发射。它是时间戳的开始。触发和时钟模块(TCM)接收、同步T0信号,并基于PXIe背板总线将T0信号分配给每个FDM。同时,检测信号经调理后送入FDMs进行波形数字化。信号的第一个采样点是时间戳的停止。根据启动、停止时间戳和信号超过阈值的时间,可以得到总的TOF。在TCM上实现了基于FPGA(现场可编程门阵列)的TDC,以准确地获取异步T0信号与全局同步时钟相位之间的时间间隔。在FDM上还设计了一个基于FPGA的TDC来精确地获取到达FDM的T0与检测器信号第一个采样点之间的时间间隔,离线获得信号的过阈值时间。这种测量TOF的方法是有效的,不需要额外的模块。测试结果表明,TOF的精度可达亚纳秒级,能够满足CSNS对背光的要求。
---
英文标题:
《Electronics of Time-of-flight Measurement for Back-n at CSNS》
---
作者:
T. Yu, P. Cao, X.Y. Ji, L.K. Xie, X.R. Huang, Q. An, H.Y. Bai, J. Bao,
Y.H. Chen, P.J. Cheng, Z.Q. Cui, R.R. Fan, C.Q. Feng, M.H. Gu, Z.J. Han, G.Z.
He, Y.C. He, Y.F. He, H.X. Huang, W.L. Huang, X.L. Ji, H.Y. Jiang, W. Jiang,
H.Y. Jing, L. Kang, B. Li, L. Li, Q. Li, X. Li, Y. Li, R. Liu, S.B. Liu, X.Y.
Liu, G.Y. Luan, Y.L. Ma, C.J. Ning, J. Ren, X.C. Ruan, Z.H. Song, H. Sun,
X.Y. Sun, Z.J. Sun, Z.X. Tan, J.Y. Tang, H.Q. Tang, P.C. Wang, Q. Wang, T.F.
Wang, Y.F. Wang, Z.H. Wang, Z. Wang, J. Wen, Z.W. Wen, Q.B. Wu, X.G. Wu, X.
Wu, Y.W. Yang, H. Yi, L. Yu, Y.J. Yu, G.H. Zhang, L.Y. Zhang, J. Zhang, Q.M.
Zhang, Q.W. Zhang, X.P. Zhang, Y.T. Zhao, Q.P. Zhong, L. Zhou, Z.Y. Zhou and
K.J. Zhu
---
最新提交年份:
2018
---
分类信息:
一级分类:Physics 物理学
二级分类:Instrumentation and Detectors 仪器仪表和探测器
分类描述:Instrumentation and Detectors for research in natural science, including optical, molecular, atomic, nuclear and particle physics instrumentation and the associated electronics, services, infrastructure and control equipment.
用于自然科学研究的仪器和探测器,包括光学、分子、原子、核和粒子物理仪器和相关的电子学、服务、基础设施和控制设备。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
Back-n is a white neutron experimental facility at China Spallation Neutron Source (CSNS). The time structure of the primary proton beam make it fully applicable to use TOF (time-of-flight) method for neutron energy measuring. We implement the electronics of TOF measurement on the general-purpose readout electronics designed for all of the seven detectors in Back-n. The electronics is based on PXIe (Peripheral Component Interconnect Express eXtensions for Instrumentation) platform, which is composed of FDM (Field Digitizer Modules), TCM (Trigger and Clock Module), and SCM (Signal Conditioning Module). T0 signal synchronous to the CSNS accelerator represents the neutron emission from the target. It is the start of time stamp. The trigger and clock module (TCM) receives, synchronizes and distributes the T0 signal to each FDM based on the PXIe backplane bus. Meantime, detector signals after being conditioned are fed into FDMs for waveform digitizing. First sample point of the signal is the stop of time stamp. According to the start, stop time stamp and the time of signal over threshold, the total TOF can be obtained. FPGA-based (Field Programmable Gate Array) TDC is implemented on TCM to accurately acquire the time interval between the asynchronous T0 signal and the global synchronous clock phase. There is also an FPGA-based TDC on FDM to accurately acquire the time interval between T0 arriving at FDM and the first sample point of the detector signal, the over threshold time of signal is obtained offline. This method for TOF measurement is efficient and not needed for additional modules. Test result shows the accuracy of TOF is sub-nanosecond and can meet the requirement for Back-n at CSNS.
---
PDF链接:
https://arxiv.org/pdf/1806.0925