摘要翻译:
金融市场是复杂系统的一个典型例子,其中各组成部分之间的相互作用导致了许多显着的特征。在这里,我们证明了两两最大熵模型(或自logistic模型)能够描述有序(强相关)和无序市场状态之间的切换。在这个框架中,影响矩阵可以被看作是一种不同的度量,我们解释了如何用它来研究市场结构。我们将股票市场的图论描述与非随机和无标度的拓扑、崩溃时的收缩长度和预期的有意义的聚类特征联系起来。两两模型提供了一种研究金融网络的替代方法,它可能有助于描述异常市场状态(危机和泡沫)、资本分配或监管规则的设计。
---
英文标题:
《Market structure explained by pairwise interactions》
---
作者:
Thomas Bury
---
最新提交年份:
2014
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Physics 物理学
二级分类:Disordered Systems and Neural Networks 无序系统与
神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
Financial markets are a typical example of complex systems where interactions between constituents lead to many remarkable features. Here, we show that a pairwise maximum entropy model (or auto-logistic model) is able to describe switches between ordered (strongly correlated) and disordered market states. In this framework, the influence matrix may be thought as a dissimilarity measure and we explain how it can be used to study market structure. We make the link with the graph-theoretic description of stock markets reproducing the non-random and scale-free topology, shrinking length during crashes and meaningful clustering features as expected. The pairwise model provides an alternative method to study financial networks which may be useful for characterization of abnormal market states (crises and bubbles), in capital allocation or for the design of regulation rules.
---
PDF链接:
https://arxiv.org/pdf/1210.8380