摘要翻译:
证明了分数排他统计量(FES)在一般相互作用系统中的表现,并计算了排他统计量参数。最重要的是,我证明了互斥统计参数--当粒子在一个希尔伯特空间中的存在影响另一个希尔伯特空间的维数时--与它们所作用的希尔伯特空间的维数成正比。这一结果虽然令人惊讶,而且不同于理解FES的通常方法,但使这一统计在热力学极限下是一致和有效的,这与J.Phys中引入的魔术是一致的。A:数学。提奥尔。40、F1013(2007)。
---
英文标题:
《Fractional exclusion statistics in general systems with interaction》
---
作者:
Drago\c{s}-Victor Anghel
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Mesoscale and Nanoscale Physics 介观和纳米物理
分类描述:Semiconducting nanostructures: quantum dots, wires, and wells. Single electronics, spintronics, 2d electron gases, quantum Hall effect, nanotubes, graphene, plasmonic nanostructures
半导体纳米结构:量子点、线和阱。单电子学,自旋电子学,二维电子气,量子霍尔效应,纳米管,石墨烯,等离子纳米结构
--
---
英文摘要:
I show that fractional exclusion statistics (FES) is manifested in general interacting systems and I calculate the exclusion statistics parameters. Most importantly, I show that the mutual exclusion statistics parameters--when the presence of particles in one Hilbert space influences the dimension of another Hilbert space--are proportional to the dimension of the Hilbert space on which they act. This result, although surprising and different from the usual way of understanding the FES, renders this statistics consistent and valid in the thermodynamic limit, in accordance with the conjucture introduced in J. Phys. A: Math. Theor. 40, F1013 (2007).
---
PDF链接:
https://arxiv.org/pdf/710.0728