摘要翻译:
Iwasawa主猜想域是研究虚二次域的Hecke特征的$L$-函数的特殊值算术的重要工具。为了得到最好的可能的不变量,重要的是知道所有素数$P$的主要猜想,并有一个可供使用的等变版本。本文首先证明了所有素数P$的虚二次域的主要猜想,改进了Rubin先前的结果。由此,我们导出了在某个$\mu$-不变量消失的情况下的等变主猜想。对于素数$p\nmid6$分裂成$k$,这是由吉拉德的一个结果得到的一个定理。
---
英文标题:
《On the equivariant and the non-equivariant main conjecture for imaginary
quadratic fields》
---
作者:
Jennifer Johnson-Leung and Guido Kings
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
The Iwasawa main conjecture fields has been an important tool to study the arithmetic of special values of $L$-functions of Hecke characters of imaginary quadratic fields. To obtain the finest possible invariants it is important to know the main conjecture for all prime numbers $p$ and also to have an equivariant version at disposal. In this paper we first prove the main conjecture for imaginary quadratic fields for all prime numbers $p$, improving earlier results by Rubin. From this we deduce the equivariant main conjecture in the case that a certain $\mu$-invariant vanishes. For prime numbers $p\nmid 6$ which split in $K$, this is a theorem by a result of Gillard.
---
PDF链接:
https://arxiv.org/pdf/0804.2828